
Adjustment Computation 

The fundamental principle can be expressed as follows: 

“In observations of equal precision, the most probable values of the observed quantities are 

those that render the sum of the squares of the residual errors a minimum.” 

There are mainly two methods to perform the Least Square Adjustment  

• Using Observation Equations 

• Using Conditional Equations for Triangulation computations use observation 

equations.  

Observation Equations for Triangulation Computations 

        𝜑2 , 𝜑3                  
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      𝜑1 , 𝜑2  

In a set of observations. 

           If   N >U adjustment is possible 

          Where, N= Number of observations 

          U= Number of unknowns 
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Observation Equation for the Azimuth AB, 

 

Figure: Azimuth of a line. 

 

    

In case that the observed quantities are included angles 

 

 

Figure: Azimuth of a line using include angles. 

 

  

We know that, 

 

   

  i-Instrument station 

  b-Backward Station 

  f-Forward station 
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So now the observation equation for included angle, 

 

 

where 

 

 

 

where 

𝑑𝛼𝑡= Error of the azimuth difference. 

𝑀𝑖 = Meridian radius of curvature at the instrument station. 

𝑀𝑓= Meridian radius of curvature at the forward station. 

𝑀𝑏= Meridian radius of curvature at the back station. 

𝑁𝑖= Prime vertical radius of curvature at the instrument station. 

𝑁𝑓= Prime vertical radius of curvature at the forward station. 

𝑁𝑏= Prime vertical radius of curvature at the back station. 

𝑑𝜑 , 𝑑𝜆= Error of latitude and longitude. 

IB= Length of back sight. 

IF = Length of fore sight. 

α = Azimuth of the station 

Using above observation equation calculate the Jacobean and f matrix for least square adjustment  
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Where  nvvv ,, 21    Residuals 

−'

1 Observed value 

−0

1 Computed value 
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2211 ,,,  -unknowns 

according the concept of least square adjustment 

The sum of the square of the residuals should be minimum (  wT= ); 
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(References: Prasanna H.M.I (2014) Geodetic Computations on Triangulation) 


