Mid Latitude Formula

This is used to determine the Spherical Coordinates of any point. This can be applied, when the distance is less than 40km from the reference point. N

Figure 3.8: Mid Latitude Formula.

Where.

- φ_x, λ_x Spherical co-ordinates of the known point
- A_{Y} Azimuth of unknown point from the known point
- ${\cal S}~$ The distance between known point and unknown point
- $\varphi_{_{Y}}, \lambda_{_{Y}}$ Spherical co-ordinates of unknown point
- M_{X} Meridian radius of curvature of point *X*;
- M_{Y} Meridian radius of curvature of point Y;
- N_{Y} Prime vertical of curvature of point Y;
 - N_X Prime vertical of curvature of point *X*;

From the above figure we can obtain following equations.

$$\Delta \varphi'' = \frac{S.Cos(A'_x + A_y)/2}{M_M Sinl''}$$
$$\Delta \lambda'' = \frac{S.Sin(A_y + A'_x)/2}{N_M .Cos\varphi_M .Sinl''}$$
$$A'_x = A_y + \Delta A$$
$$\Delta A'' = \Delta \lambda \ Sin \varphi_m$$

The Inverse of mid latitude formula

The reverse method $\lambda_x, \varphi_x, \lambda_y, \varphi_y$ are our known data's S, Ay and A'x should be found.

$$A_{Y} + A_{X} = 2Tan^{-1} \left[\frac{\Delta \lambda^{"} . N_{M} \cos \varphi_{M}}{\Delta \varphi^{"} M_{M}} \right]$$
$$\Delta A = \Delta \lambda . Sin \varphi_{m}$$
$$S*Sin (\alpha_{12} + \Delta \alpha/2) = N_{m} \cos \varphi_{m} \Delta \lambda$$

Hence, can calculate the A_x , A_y , by using above answer; Now we can calculate the *S* by using above equations

(References : Erakiwsky E.J., Thomson D.B. (1974) Geodetic position computations)